

Cloudonix Mobile Application -
Developer Guide
Introduction 1

Getting Started 2
Android 2

Project Setup 2
Deploying License Key 2
Build and Run Project 4

iOS 5
Project Setup 5
Deploying License Key 5
Build and Run Project 5

Application Workflows 6
Initialization 6

Android 6
Example Initialization 7

Registration and Registration-Free Setup 8
Android Example 8

Dialing 8
Android Example 9

Call Reception 9
Application Shutdown 9

Reference 9

SDK Integration Notes 9
Android 9
iOS - Xcode 9

 ​This document includes proprietary and confidential information owned by Cloudonix.io
Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

Introduction
This is the mobile application developer guide for the Cloudonix Mobile SDK release 5.0. It will help
you integrate the Cloudonix Mobile SDK into your Android or iOS mobile application.

Getting Started
The Cloudonix Mobile SDK is distributed with a sample dialer application to help you get started.
The sample dialer application demonstrate how to use the SDK to connect to a SIP service and
allows the user to call through the SIP service using a dial pad or a contact list.

The following sections cover setting up the Cloudonix Mobile SDK sample application and running
it.

Android
Please note that Cloudonix Mobile SDK release 5.0 is supported on Android Studio up to version
2.3.3.

Project Setup
Download the release package and extract it in your projects folder. Then use the Android Studio to
open the project:

2
This document includes proprietary and confidential information owned by Cloudonix.io

Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

Deploying License Key
After the project loads, navigate to ​app​ > ​res​ > ​raw​ , and replace the empty place-holder file
cloudonix_license_key.lic​ with the license file you’ve received from Cloudonix.

The file name should either be kept the same as in the sample project, or otherwise you can change
the name of the file loaded by the sample application by editing the ​loadLicenseKey()​ method in
the ​net.Cloudonix.iotech.cloudonixsdk.cloudonixdialer.utils.VoIPClient​ class.

3
This document includes proprietary and confidential information owned by Cloudonix.io

Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

Build and Run Project
At this point you should be able to click the “Run” button to start the sample dialer application on a
connected device or an emulated device.

4
This document includes proprietary and confidential information owned by Cloudonix.io

Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

iOS

Project Setup
Download the release package and extract it in your projects folder.

Deploying License Key
You should have an ​IosTestDialer​ folder in the project directory, into which the license key file
should be copied, and renamed to ​sample-key-production.lic

Build and Run Project
Open the sample application project file ​IosTestDialerRelease.xcodeproj​ to open the
project in Xcode, then use the “Build and Run” command from Xcode:

5
This document includes proprietary and confidential information owned by Cloudonix.io

Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

Application Workflows

Initialization
In order to use the Cloudonix Mobile SDK in your application, it must first be initialized with the
license key (which you receive from Cloudonix, either a trial or a production license key). The
application would load the license key into the Cloudonix Mobile SDK in order to retrieve an
instance to the Cloudonix Mobile SDK control object (commonly called “instance” in this guide). This
process will verify the license, configure the SDK for the device by utilizing Cloudonix online device
configuration service and will eventually issue the ​onLicense​ event, which can be monitored by
the application to check if the licensing process completed successfully. If the licensing process
failed - for example if the license key is corrupt or has expired - then the SDK will not be
operational.

After initializing the SDK, it needs to be configured with configuration parameters such as allowed
codecs and transports, in addition to setting the SIP account details that will be used for calling and
receiving calls.

Android
After receiving the SDK client instance, the application should perform these additional steps:

6
This document includes proprietary and confidential information owned by Cloudonix.io

Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

1. Call ​addEventsListener()​ to be able to receive events from the SDK using callbacks on
a ​IVoIPObserver​ instance.

2. Call ​initPreferences()​ which is needed for the Android Cloudonix Mobile SDK service
to be able to handle incoming calls to the application even when it isn’t in the foreground.

3. Use ​setConfig()​ to set up the SDK.
4. Call ​checkBinder()​ to see if the SDK service is still running and can be reused. If the

service is running, this call will attach to the existing service.
5. If ​checkBinder()​ returned ​false​, the application needs to call ​bind()​ to create and

connect a new instance of the SDK service. After that process is complete, the SDK will
send the ​onSipStarted​ event to let the application know that the service is ready.

6. Once ​onSipStarted​ is called, the application should set up the SIP account details.

Example Initialization

public class VoIPClient implements IVoIPObserver {
 CloudonixSDKClient instance;
…
 Private initSDK(Context ctx) {
 InputStream input = ctx.getResources().openRawResource(R.raw.license);
 try {
 String lic = new String(CryptUtils.convertStreamToByteArray(input));
 instance = CloudonixSDKClient.getInstance(lic);
 instance.addEventsListener(this);
 instance.initPreferences(ctx);
 setConfiguration();
 if (instance.checkBinder())
 return;
 instance.bind(); // will cause onSipStarted to be called
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void setConfiguration() {
 instance.setConfig(ConfigurationKey.USER_AGENT, "MyApp/1.0");
 …
 }

 @Override
 public void onLicense(LicensingState state, String description) {
 // handle licensing problems
 }

 @Override
 public void onSipStarted() {
 instance.setAccount(new RegistrationData() {{
 setServerUrl("sip.server.com");
 …
 }});
 }

7
This document includes proprietary and confidential information owned by Cloudonix.io

Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

}

Registration and Registration-Free Setup
The Cloudonix Mobile SDK supports both classic SIP accounts using periodic REGISTER
messages to maintain “connection” to the server, as well as Cloudonix Registration-Free mode.

To set up a classic SIP registration mode, call
setConfig(ConfigurationKey.USE_REGISTRATION, "1")​ during the configuration process.
This is the default, so this step is optional.

To set up Cloudonix Registration-Free mode when using the Cloudonix CPaaS as your SIP service,
call ​setConfig(ConfigurationKey.USE_REGISTRATION, "0")​ during the configuration
process.

After setting the account details using ​setAccount()​, the Cloudonix Mobile SDK will automatically
register with the SIP service if needed, and will issue the ​onRegisterState​ event whenever the
registration state changes. The application can call ​isRegistered()​ to check the registration
status.

Android Example

public void onSipStarted() {
 instance.setAccount(new RegistrationData() {{
 setServerUrl("sip.server.com");
 …
 }});
}

@Override
public void onRegisterState(RegisterState result, int expiry) {
 switch(result) {
 case REGISTRATION_SUCCESS: logger.d(TAG, "registered"); break;
 case REGISTRATION_ERROR_CREDENTIALS: logger.d(TAG, "auth error"); break;
 case REGISTRATION_UNREGISTERED: logger.d(TAG, "No longer registered"); break;
 }
}

Dialing
After the application completes setting up the SDK and configuring the SIP account details, the
application may use the ​dial()​ command to start a SIP session.

The dial command will start the calling process and will issue ​onCallState​ events for each stage
in the call progress.

8
This document includes proprietary and confidential information owned by Cloudonix.io

Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

Android Example

public void dial(String number) {
 dial(number);
}

@Override
public void onCallState(String callId, CallState state, String contactUrl) {
 Switch (callState) {
 …
 }
}

Call Reception
When a call is received, the ​onCallState​ event will be invoked with the ​CallState​ set to
CALL_STATE_INCOMING​. When the application handles the event, it can call either
answer(callId)​ or ​reject(callId)​ as required.

Application Shutdown
It is important to note that when the application is moved to the background, the SDK will still
maintain context to allow the application to receive calls. If the application needs to shutdown
completely and not receive any calls, it should call ​destroy()​, after which the SDK is completely
shut down and in order to start it again it needs to be reinitialized.

Reference

SDK Integration Notes

Android

iOS - Xcode
The Cloudonix Mobile SDK uses the following libraries from the iOS SDK:

● VideoToolbox.framework
● GLKit.framework
● libstdc++.tbd
● libicucore.tbd

9
This document includes proprietary and confidential information owned by Cloudonix.io

Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

While these libraries are not automatically linked in to the project, they are available through the iOS
SDK.

To link the project with these libraries (in case the application isn’t already using them):
1. In the project’s setting, change to the “Build Phases” view.
2. In the “Link Binary With Libraries” section, click the plus sign to add a new library.
3. Add each of the libraries listed above.

10
This document includes proprietary and confidential information owned by Cloudonix.io

Tel: +972-73-2557799, Fax:+972-73-2557203, E-mail: info@cloudonix.io, P.O box 199, Udim, Israel 42905

